Wuschel-related homeobox5 gene expression and interaction of CLE peptides with components of the systemic control add two pieces to the puzzle of autoregulation of nodulation.
نویسندگان
چکیده
In legumes, the symbiotic nodules are formed as a result of dedifferentiation and reactivation of cortical root cells. A shoot-acting receptor complex, similar to the Arabidopsis (Arabidopsis thaliana) CLAVATA1 (CLV1)/CLV2 receptor, regulating development of the shoot apical meristem, is involved in autoregulation of nodulation (AON), a mechanism that systemically controls nodule number. The targets of CLV1/CLV2 in the shoot apical meristem, the WUSCHEL (WUS)-RELATED HOMEOBOX (WOX) family transcription factors, have been proposed to be important regulators of apical meristem maintenance and to be expressed in apical meristem "organizers." Here, we focus on the role of the WOX5 transcription factor upon nodulation in Medicago truncatula and pea (Pisum sativum) that form indeterminate nodules. Analysis of temporal WOX5 expression during nodulation with quantitative reverse transcription-polymerase chain reaction and promoter-reporter fusion revealed that the WOX5 gene was expressed during nodule organogenesis, suggesting that WOX genes are common regulators of cell proliferation in different systems. Furthermore, in nodules of supernodulating mutants, defective in AON, WOX5 expression was higher than that in wild-type nodules. Hence, a conserved WUS/WOX-CLV regulatory system might control cell proliferation and differentiation not only in the root and shoot apical meristems but also in nodule meristems. In addition, the link between nodule-derived CLE peptides activating AON in different legumes and components of the AON system was investigated. We demonstrate that the identified AON component, NODULATION3 of pea, might act downstream from or beside the CLE peptides during AON.
منابع مشابه
Search for nodulation-related CLE genes in the genome of Glycine max.
CLE peptides are potentially involved in nodule organ development and in the autoregulation of nodulation (AON), a systemic process that restricts nodule number. A genome-wide survey of CLE peptide genes in the soybean glycine max genome resulted in the identification of 39 GmCLE genes, the majority of which have not yet been annotated. qRT-PCR analysis indicated two different nodulation-relate...
متن کاملStructure–function analysis of the GmRIC1 signal peptide and CLE domain required for nodulation control in soybean
Legumes control the nitrogen-fixing root nodule symbiosis in response to external and internal stimuli, such as nitrate, and via systemic autoregulation of nodulation (AON). Overexpression of the CLV3/ESR-related (CLE) pre-propeptide-encoding genes GmNIC1 (nitrate-induced and acting locally) and GmRIC1 (Bradyrhizobium-induced and acting systemically) suppresses soybean nodulation dependent on t...
متن کاملCLE peptides control Medicago truncatula nodulation locally and systemically.
The CLAVATA3/embryo-surrounding region (CLE) peptides control the fine balance between proliferation and differentiation in plant development. We studied the role of CLE peptides during indeterminate nodule development and identified 25 MtCLE peptide genes in the Medicago truncatula genome, of which two genes, MtCLE12 and MtCLE13, had nodulation-related expression patterns that were linked to p...
متن کاملNodule Inception creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production.
Autoregulatory negative-feedback loops play important roles in fine-balancing tissue and organ development. Such loops are composed of short-range intercellular signaling pathways via cell-cell communications. On the other hand, leguminous plants use a long-distance negative-feedback system involving root-shoot communication to control the number of root nodules, root lateral organs that harbor...
متن کاملThe soybean (Glycine max) nodulation-suppressive CLE peptide, GmRIC1, functions interspecifically in common white bean (Phaseolus vulgaris), but not in a supernodulating line mutated in the receptor PvNARK.
Legume plants regulate the number of nitrogen-fixing root nodules they form via a process called the Autoregulation of Nodulation (AON). Despite being one of the most economically important and abundantly consumed legumes, little is known about the AON pathway of common bean (Phaseolus vulgaris). We used comparative- and functional-genomic approaches to identify central components in the AON pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 158 3 شماره
صفحات -
تاریخ انتشار 2012